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The Nikolskii transform makes it possible to construct inhomogeneous 
solutions of the Boltzmann equation from homogeneous ones. These solutions 
correspond to a gas in expansion, but if we introduce external forces, they can 
relax toward absolute Maxwellians. This property holds independently of the 
assumed intermolecular inverse power force. Consequently, for Maxwell 
molecules and from energy-dependent homogeneous distributions, we construct 
effectively a class of inhomogeneous similarity distributions with Maxwellian 
equilibrium relaxation. We review and investigate again the homogeneous dis- 
tributions which can be written in closed form, for instance, we show that an 
elliptic exact solution proposed some years ago violates positivity. For Maxwell 
interaction with singular cross sections, we numerically construct 
inhomogeneous distributions having Maxwellian equilibrium states and study 
the Tjon overshoot effect. We show that both the sign and the time decrease of 
the external force as well as the microscopic model of the cross section con- 
tribute to the asymptotic behavior of the distribution. These inhomogeneous 
similarity solutions include a class of distributions that asymptotically oscillate 
between different Maxwellians. Two classes of external forces are considered: 
linear spatial-dependent forces or linear velocity-dependent forces plus source 
term. 

KEY WORDS: Boltzmann equation; kinetic theory; nonlinear equations. 

1. I N T R O D U C T I O N  

More than 20 years ago, for the Boltzmann equation without external for- 
ces, Nikolskii ~) discovered a transform that makes it possible to build up a 
class of inhomogeneous solutions f (v ,  x, t) (v is the velocity, x the space 
coordinate, and t the time) from homogeneous ones F(q, ~) (q is the 
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612 Cornille 

velocity, z that time). Through this transform F and f become identical, f 
being an inhomogeneous distribution; q(v, x, t) and r(t) are well-defined 
functions. The result holds independently of the intermolecular inverse 
power law (although some minor differences occur(~)). The drawback is 
that when t goes to infinity, the inhomogeneous distribution, the tem- 
perature 1, and the local density p go to zero, leading to the physical inter- 
pretation of a gas in expansion. When Bobylev (2) discovered his exact 
homogeneous distribution, he applied the Nikolskii transform to it and 
found the first explicit known inhomogeneous distribution with, unfor- 
tunately, the above-mentioned relaxation toward zero. 

The need for explicit three-dimensional (d=  3) inhomogeneous dis- 
tributions relaxing toward absolute Maxwellian equilibrium distributions 
has remained (only for the d =  1 Kac model with momentum conservation 
dropped has such a kind of relaxation been found(3)). Recently (4~ this dif- 
ficulty was overcome for Maxwell molecules by introducing external forces 
linear in the space variable (harmonic potentials) or in the velocity variable 
(with, in addition, a source term). Explicit inhomogeneous similarity 
solutions with the same analytic structure as the Bobylev-Krook-Wu (5) 
homogeneous distribution were obtained, and the equilibrium distributions 
were absolute Maxwellians. So these forces act like confining external for- 
ces because the gas, instead of expanding in space, remains in a Maxwellian 
equilibrium state. 

Here we want to clarify and extend the result quoted above, keeping 
these external confining forces. First we introduce other intermolecular for- 
ces besides those leading to Maxwell particle interactions. Second, starting 
with the whole class of homogeneous energy-dependent distributions, we 
extend the class of exact inhomogeneous similarity distributions relaxing 
toward absolute Maxwellians. In order to roughly understand the results, 
we can briefly say that for large time the distributions are similar to local 
Maxwellians fLM 

fLM = p(2rcT) d/2 exp(--e2/2T) (1.1) 

where c is the peculiar velocity, e = v - ( v ) .  The mean velocity <v) 
depends on x and t, while p, the local density, and T, the temperature, are 
only t dependent. If the external forces are absent, then the temperature T 
goes to zero, fLM ~ 0, whereas if the confining forces are present, we can 
find T ~  const and 

fLM "--~ l a b s  Max = const x exp( - const x c 2) 

We can also obtain relaxation toward oscillating Maxwellians if T 
oscillates when t is growing. For the inhomogeneous similarity solutions we 
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must at least require f f ' (c2/2T)= 0, where 2 is the differential part of the 
linear Boltzmann operator ~ .  There exists a connection between this con- 
dition and 5r 0, the condition leading to the determination of the 
solutions of the linear part of the B.E. alone. Since the temperature is deter- 
mined by the above condition and T is responsible for the asymptotic 
relaxation, the existence of Maxwellian equilibrium states is independent of 
the intermolecular force laws. We choose external forces that are spatially 
dependent in Sections 2-4 and that are linearly velocity dependent with 
source term in Section 5. 

In Section 2, we consider the d >  1 dimensional B.E. with arbitrary 
repelling intermolecular forces, and, introducing spatial external forces, we 
generalize the Nikolskii transform. The dependences of T, p, and ( v )  are 
obtained from the external forces, so that the different possibilities of 
relaxation are independent of the intermolecular forces. However, only for 
Maxwell molecule intermolecular forces and spatially homogeneous dis- 
tributions with even velocity dependence is the explicit construction of 
Boltzmann distributions presently known, so that is Sections 3 and 4 we 
restrict our attention to these cases. 

In Section 3 we recall and discuss the well-known homogeneous 
energy-dependent formalism/2'5 71,2 We write down the Laguerre expan- 
sions of the distributions, the Laguerre moments being recursively deter- 
mined. The interest is that all these homogeneous solutions can also be 
viewed as inhomogeneous similarity distributions with absolute 
Maxwellian relaxations. We also reconsider the nonlinear partial differen- 
tial equations (NLPDE)  ~5'8'9)3 as well as a nonlinear integrodifferential 
equations (1~ obtained some years ago for the generating functionals of the 
power moments. We discuss the possible exact solutions and obtain new 
"solitons" and "bisolitons." We focus our attention on the homogeneous 
similarity solutions and, for instance, prove rigorously that a 
Weierstrassian elliptic solution proposed some time ago by Ernst (7) as a 
new Boltzmann distribution must be rejected because it violates positivity. 

In Section4 we perform some numerical calculations for the 
inhomogeneous similarity distributions associated with temperatures going 
to constants or oscillating. In the first case we study the Tjon overshoot 
effect (11) for the reduced distribution (ratio of the distribution to its 
asymptotic absolute Maxwellian). We take the opportunity to compare the 
effect in both homogeneous and inhomogeneous formalisms. We find new 

2 See Refs. 7 for reviews and additional references. 
3 Reference 9 discussed homogeneous solutions outside the usual L 2 space spanned by the 

Laguerre polynomials. To these homogeneous distributions also correspond also a class of 
inhomogeneous similarity distributions having the relaxation properties studied in the 
present paper. 
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614 Cornille 

features: the sign and the decrease of the external force as well as the 
microscopic cross section are important. All the numerical calculations are 
performed with the true Maxwell inverse fourth power interaction. This 
means that we must take into account a singular differential cross section. 

In Section 5 we study external forces that depend linearly on velocity 
plus source term. We find two possibilities, depending on whether 2 ,  the 
differential part of the linear Boltzmann operator, is identical to 5 ~ or not. 
In the second case, the asymptotic behavior of the distribution contains a 
pure time factor, leading to asymptotic behavior incompatible with that of 
the Gaussian part of the Maxwellian. Singular asymptotic behavior, such 
as a delta distribution, can occur. We disregard this uninteresting case, 
since we seek absolute Maxwellians. 

For  the first possibility, as for the spatial harmonic potential, the 
asymptotic behavior of the inhomogeneous distribution can be oscillating 
as well as absolute Maxwellian. Only the differential relations between tem- 
perature and the time-dependent part of the outside force are different. This 
means that if we start with a given temperature, we can associate both a 
spatially dependent force model and a velocity-dependent force plus source 
terms. Consequently, all the results of Sections 3 and 4 can be applied to 
this problem. In particular, the numerical distributions constructed in Sec- 
tion 4 for spatial forces can be reinterpreted in terms of velocity-dependent 
forces plus source term. 

2. NIKOLSKII T R A N S F O R M  IN THE PRESENCE OF 
EXTERNAL FORCES 

2.1. Inhomogeneous versus Homogeneous Formalisms for 
Spatial Forces 

We write down the B.E. for inhomogeneous d-dimensional dis- 
tributions f (v ,  x, t) (x and v are d >  1 dimensional vectors) in the presence 
of spatially dependent external forces A(x, t). We assume intermolecular 
forces with inverse power law p: 

~ f ( v , x , t ) = # C o l f ( v , x , t ) ,  ~ = O , + v . C ~ x + O ~  A 

f dQ d dw tr(d)(x) gl-2td l)/(p 1)[ f (w, ) f (v ,  ) Col f =  Sd 1 ~ f ( v ) f ( ~ ) ~ 

(2.1) 

# is a constant, Sa = ~ dQd, g = v - w is the reltive velocity, Igl = g = [g'] = 
I v ' - w l ;  dQd is the d-dimensional infinitesimal solid angle 

dff2d= (sin z)d- 2(sin g)d-- 3(sin gl) d-4"'" sin gd--4 dz dgl"'d~,d_3 
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expressed as a function of the d - 2  polar angles Z, e, el ,..., ed-3 e [-0, 7r] and 
of the azimuthal angle ea 4 E [0, 2~z] of (g, g') ar is the cross section 
and 0 the angle between v and w. We assume momentum and energy con- 
servation: v + w = v' + w' and v 2 + w 2 = v '2 + w '2, leading to 

w,2j w2 + (w 2 - v  2) sin ~+ lv l  I w l s i n z s i n 0 c o s e  _ 

The main assumption & that f is an inhomogeneous similarity solution 
identical to a homogeneous distribution F with q and z as velocity and time 
variables: 

f - = f ( q ( v ,  x, t), z(t))-= F(q, z) (2.2) 

c~F(q, ~) = Col F(q, v) (2.3) 

Col F is the expression written down in (2.1) with v, w,... replaced by qv, 
t t 2 q ...... always with q,  + q,, = rl~, + I1,,, and rl~ + qw = q,2 + q,2 ...... 

Let us assume that q =~(x,  t)[V-Vo(X, t)], with 7 and Vo unknown, 
this ansatz being suggested by the local Maxwellians of both (2.1) and 
(2.3). We want to show that 7 and Vo can be expressed in terms of the tem- 
perature T and the mean velocity ( v )  of the inhomogeneous solution. 
Furthermore, we establish the relations between the macroscopic quantities 
in both formalisms. For  the homogeneous F we define constants of local 
mass, energy, momentum, and temperature 

N i = f  flrll~dll, i = 0 , 2  N o ( q ) = f  Fqdil (2.4) 

We choose the temperature of the homogeneous solution to be equal to 1; 
for the constants Ni we have N2/N o=d [we recall that 
F--+ No(2~ ) d/2 e x p ( - q 2 / 2 )  when r--+ ~ ]  and performing a Galilei trans- 
formation, we choose ( q )  = 0. For the inhomogeneous f we define p, ( v ) ,  
and T: 

Substituting (2.2) and q = ~(v - Vo) into (2.5), taking into account (2.4) and 
dq=TJdv, we find the relations between the inhomogeneous and 
homogeneous macroscopic quantities: 

p=7-dNo, p ( v ) = v o ?  dNo=pVo ' dTp=No~;-JNzXoly-Z=dpy 2 

(2.6) 

~ 2 2 / 4 5 / 3 - 4 - 1 7 '  
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It follows that ~--2= T, v0= <v>, and 

q = T 1/2(V-- <V>) = T-I/2c, pT-J /2=cons t=No (2.7) 

We rewrite the B.E. (2.1) for the inhomogeneous f - F  with q written down 
in (2.7) and factorize out in C o l f  the factor not present in Col F (we per- 
form the change of variable v---, IlTl/2 + ( v ) )  

d_~tf~+Zftlj~(tlj)~_[iTl+E(d-l)/Z](p 3)/(p 1)GolF  (2.8) 
J 

where r/j is the j th  component of q. If both conditions 

dz 
dt #Tl+(a 1/21~p 3)/,~p ii (2.9) 

5~ = 0 Vj (2.10) 

are satisfied, then f = - F  satisfies the homogeneous B.E. (2.3). As we shall 
see later, 5~(t/j)= 0 determines classes of compatible forces A and tem- 
peratures T (or density p with pT -a/2 = const). If we look at the large-time 
local Maxwellians, we find different possibilities: 

1. If T(t) ~ O, then p ~ 0, fLM --+ 0, and the gas is in expansion. This 
is what happens if the forces are not present, as in the original 
Nikolskii transform. 

2. If T(t) ~ const, then p ~ const, fLM ~ fAM, an absolute 
Maxwellian. 

3. If T(t) oscillates, then p and fLM also oscillate. 

In the Nikolskii framework where T ~ 0 ,  a distinction occurs 
depending on whether the time integral on the rhs of (2.9) leads to ~ ~ 
or a constant [-equivalently, depending on whether the rhs of (2.9) 
decreases less or more than t 1]. Because, as we shall see, T ~  1-2, the two 
different behaviors appear when the parameter p of the intermolecular 
potential crosses the value 3 -  2/d (7/3 for d =  3). However, in both cases 
T ~  0 and the gas is in expansion. Here we introduce confining forces to 
keep temperatures from going to zero (whether the decrease of T is slow or 
fast). Consequently, we do not consider these distinctions. 

The important point is that L~(r/j)= 0 alone determines T. Thus, the 
existence or not of absolute and oscillating Maxwellian relaxations 
becomes independent of the intermolecular forces. In other words, when 
the external forces are confining the gas, this property is independent of the 
microscopic interactions between the molcules. For  instance, for hard 
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spheres we can everywhere go to the limit p--.  oo in the above equations 
without altering the confinement property. [On the rhs of (2.1) we have g~, 
and the change of variable q instead of v leads to T (~ +d~/2 on the rhs of 
(2.8) and clr/dt = ,uT (1 +a)/2 in (2.9)]. 

If the homogeneous distributions E depend only on the energy, 
F(q 2, r), then the lhs of (2.8) becomes (dr/dt)f~+f,~5~(q 2) and in (2.10) 
~(r/j)  = 0 is replaced by S ( r l  2) = 0. We notice that if 5('(r/j)= 0, Vj, then 
2'(112) = 0, but the converse is not necessarily true. 

2.2. ~f(I]j)=0 with Spatially Dependent Forces A(x,  t)  

We seek the compatible ;~ = T 1/2, ( v ) ,  and A satisfying the linear dif- 
ferential equation 

(c~,+~viOx +Aic3~,) [y(vj-(v)j)]=O Vj (2.11) 
i 

All the coefficients of the vi powers must be zero. Then vivj, vj constant, 
gives, respectively, 

~, = ~(t), (v)j ,  xi = a,j~,,~, i, A / ~ - ~ ( v ) j = 0  

from which we obtain the general solution 

A(x, t) = a( t )x  + Ao(t), a'; = 7,  
(2.12) 

y ( v )  = 7 , x  + it(0) + Ao(')y(t')dt' 

and the outside potential is a pure harmonic one. 

1. If the force is independent of x, then a = 0 ,  T = ? - 2 =  
[Co+Clt] 2--'0. 

2. If a(t)~ O, then the equation for T 1/2 is like an S-wave 
Schr6dinger equation for zero momentum. If the potential "a(t)" is 
"regular," both at t = 0  and t =  oo or tZa(t)~O, then T -~/2 is a "Jost 
solution," 

f7 T-~/~=const+ (t '- t)  T 1/2(t')a(t')dt' (2.13) 

for which we obtain temperatures T going to a constant when t--) oo. For 
instance, there exist explicit Bessel solutions for the temperature, 

a(t)=ae-~'t ~ T-1/2=Io(2x~aae-~'/2)//Io(2x/-a ) if a > 0  

T 1/2=Jo(2~-ae-"~r/e)/Jo(ZxS~ ) if 0 <  - a <  1.44 

(2.14) 
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3. If a(t) is oscillating, we can find temperatures T oscillating, too. 
We notice that we must require that a(t) be such that T >  0. 

2.3. ~ (qa )  = 0  with A(x, t) 

The discussion is similar to the previous one, but more complicated, 
because the highest v~ power is of the third order. The analysis is made in 
Appendix A (see also Ref. 4), putting to zero the coefficients of the various 
powers IvlZv~, vivj, v 2, vi, const. We obtain a more general family of 
solutions than previously. 

The general mean velocity is 

(v >i = ~i(t) + 7- '  7,x~ + Y~ ~ j ( t )x j  (2.15) 
J 

with ~o~j an antisymmetric tensor: ~oij + ~oj~ = 0. Similarly, the foce A, still 
linear in the spatial components x~, can contain an antisymmetric tensor 
part and can furthermore be conservative or not, i.e., 

d ~ 2  ~3~Ai- axiAj = 27 -2 ~ ~ m~ (2.16) 

depending upon whether 7zcou is time independent or not. We distinguish 
the following possibilities: 

1. A = 0  or the force is not present (see Appendix A1.2). For  (v> we 
obtain solutions purely proportional to x (or o~0=0 ) as well as solutions 
with tensor term eJ0 r  (unfortunately not for the physical d =  3 case, but 
for d =  2, 4,.,.). For  the temperature we find that 72 or T -~ is quadratic in 
the time variable and so T--* 0 when t ~ oo, 

2. A(x, t) is a conservative foce without antisymmetric part (~o~j = 0). 
The solution is the same as the one for f ( r / ; ) = 0  written down in (2.12). 
The external potential is purely harmonic and the temperature satisfies 

43 t 2 T -1/2 = a( t) T -1/2 

with the same possibility of T going to a constant or oscillating. 

3. A(x, t) contains a part with the tensor ~o U and is either conser- 
vative or not (see Appendix A1 and A1.3). The rhs of Eq. (A30) defines the 
different spatial dependences of the force: 

j ~ 
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If we call a( t )x  the part of A proportional to x, then, as above, we find 
7,t = a7 with the possibilities of T ~  const or T oscillating. We can consider 
the o)o(t ) as arbitrary functions and the last term defines the x ;dependent  
part of the ith component of the foce A. Similarly, we can consider the cq 
terms of ( v )  i as arbitrary (we can also choose cq= 0) and the first bracket 
defines the part of the force that is independent of the space variables. 

2.4. Connection between the Solutions of d ( q  2) = 0  and 
Those of ~/~(fLa} = 0  (see Appendix A) 

There exists an interpretation of the conditions ~o(q2)= 0 necessary 
for obtaining inhomogeneous similarity solutions associated with energy- 
dependent homogeneous ones. A long time ago Boltzmann (12~ (see also 
Cercignani (13~ studied the time- and space-dependent local Maxwellians 
corresponding to a vanishing collision term. Let us rewrite fCM = 
v(x, t) exp(--q2/2) with always q 2 = e 2 T  -1 and define v=p(27zT) -d/2. If 
Col fCM -= 0, we find 

((3, + v" 3x) log  v(x, t) =- s or 5a(fLM) -- 0 (2.18) 

In Appendix A we seek the sufficient assumption on v such that (2.18) leads 
to 5('(rl2)=0. From (2.18), assuming (see AppendixA1.3) v (or pT J/2) 
independent of x, then one proves that v = const, whence y ( q 2 ) =  0. We 
recall that this is the condition for the Nicholskii transform associated with 
F(q 2, r). It is shown in Appendix AI.1 that if ~ ( f c M ) = 0 ,  without force 
A = 0, then necessarily T, fLM --+ 0; if, further, v is independent of x, we dis- 
cuss in Appendix A1.2 the two possibilities co,j= 0 and c%r  

2.5. Maxwell  Particles 

The intermolecular potentials are such that g disappears in the 
collision term or p - 1  - 2 ( d - 1 ) =  0. Then (2.8) can be rewritten 

r - r ( 0 ) = #  dr' = const x p(t ')dt '  (2.19) 

If the local density p of the inhomogeneous distribution decreases more 
slowly than t -~, if p ~ c o n s t  (T-- ,const) ,  or if p oscillates between two 
positive constant values, then r ~ oo when t ~ oo. The time variable of the 
associated homogeneous distribution can go to infinity. In particular, when 
r ~ o o  (t --+ oo), 

F--+ (2re) a/2 exp(--!12/2) ----= (2~)-a/2p(oo)[2rcT(oo)] d/2 exp[_c2 /2T(oo) ]  
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and f ~ F tends to an absolute Maxwellian if T ~ const. These remarks are 
not restricted to the Maxwell interaction, because for other intermolecular 
forces, if T ~ c o n s t ,  from (2.9), we see that r ~  oo and 
F ~ e x p ( - c o n s t x e 2 ) .  However, for Maxwell particles and F(q2, r) we 
know well the construction of explicit distributions and we restrict our- 
selves to these cases in Sections 3 and 4. 

2.6. Local Entropy 

We define J o = - ~ f l o g f d v  and J = ~ v f l o g f d v  and assume 
spatially dependent external forces. From the standard treatment of the 
collision term it follows that ~ , J o + ~ ? x J > ~ 0 .  Further, assuming even 
inhomogeneous similarity distributions f (e2/T,  r(t)) and introducing 
e = v -  ( v ) ,  we find J0 = Jo(t) and ~r = ( v )  or (spatial dependence only 

�9 _!~? log T, whence through ( v ) ) .  We recall from (2.15) and Ox ( v ) =  2 t 
O,JT -d/2 >~ O. Finally we obtained that the local entropy density Jo divided 
by T a/2 cannot be a decreasing function of the time. 

3. H O M O G E N E O U S  F O R M A L I S M  REVISITED 

We assume Maxwell intermolecular forces and again investigate the 
properties of F(q2, r), a spatially homogeneous, energy-dependent dis- 
tribution satisfying c~F=  Col F. The connection with the inhomogeneous 
similarity distributions f (q2  = C2T-1, r = # ~; Ta/2 dt') is obtained through 

62 the temperature T with ( , 2 - a ( t ) )  T -1/2= 0 [a(t')x being the part of the 
external force proportional to x). Mainly three methods have been 
developed for the construction of F(il 2, ~). 

1. The direct substitution of an appropriate ansatz into the 
homogeneous B.E. and the determination of the possible solutions. Only 
the BKW solution has been successfully built up in this way. (5) 

2. The general theory following Grad's ideas uses expansion with 
Laguerre polynomials. (6'7) The Laguerre moments are recursively found 
from initial conditions at r = 0 .  Sufficient conditions in L 2 such that 
Laguerre moments remain in this space have been established314'2~ 

3. The last method used a generalized Laplace transform, which 
relates the distribution F(q 2, r) and the generating functional of the power 
moments. We must assume that the cross section has a well-defined 
behavior. The B.E. is replaced by a NL  PDE (s'8'9~ for which "solitons" and 
"bisolitons" have been determined (15~ and in fact turn out to correspond to 
the BKW distribution. An elliptic Weierstrassian distribution was presen- 
ted by Ernst (7'16) as a new exact solution. Independently, other authors ~ 
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were suspicious about this solution because numerical calculations seemed 
to indicate that it violates positivity. A rigorous proof was missing. Here, 
after an analytical study, we conclude that it must be rejected. A 
generalization of the NL PDE into an integrodifferential PDE was found 
by Ernst and Hendriks. (1~ Here for this equation we determine the 
"solitons" and "bisolitons" and find again again that they correspond to 
the BKW solution. 

3.1. D i rec t  Use of  the  B.E. 

Start with an ansatz that the solution is a product of a r-dependent 
Gaussian exp[-r/Zb(r)]  and an even polynomial ~N an(r)rl2n It turns out 
that the polynomial is necessarily quadratic, which leads to the BKW dis- 
tribution 

exp[-q2/2K(1 -q~)] [ @ -  ( q2 ) J  
f(l l  2, r ) =  [ 2 ~ K ( 1  __~)-]d/2 N O 1 4 2 ( - q ~ )  K-( i~b)  d 

0 < qo(0) < (1 +d/2) -1 (3.~) 

~r2 = j sin2 Z a(Z) df2a/4Sa 

~b = ~b(0) exp ( -  a2r), K =  N2(Nod ) -i 

We can choose K = l if the constant homogeneous local density and energy 
satisfy ( N 2 d N o ) - l = l .  The connection with the inhomogeneous dis- 
tribution f was fully developed in Ref. 4. If the force a(t)x is such that T or 
p go to constants when t--+ 0% then r--+ oo, ~b--+ 0, F ~  const x exp(-q2/2), 
f--+const xexp(-e2/2) ,  an absolute Maxwellian. Similarity, if T or p 
oscillates, then r--+ oo, ~b--+ 0, and asymptotically f becmes an oscillating 
Maxwellian. 

3.2. Expansion with Laguerre Polynomials 

We start with the Laguerre expansion 

oo 
F =  (2~t) -a/2 exp(-q2/2)  ~ ( -1 ) "  an(r) La~/2 *(q2/2) 

0 

(3.2) 

which we substitute into the homogeneous B.E. c~F= Col F. The Laguerre 
moments an(r) are solutions of a nonlinear differential system which can be 
integrated and included the i.c. 
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a n ( r ) = e  ~"~ an(O)+ a m ( r ' ) a . _ ~ ( z ' ) e  ~"~'B .... CTd t '  
1 

';o Bm,~ = ~ dz ~(Z) sn Z(cos zZm/2 + sin )~2(.-ml/2 __ ~m.O) 

2 F(d/2) ~(a)(Z ) sin Z a 3 
- r ( ( d -  1)/2) 

Bo = B1 = 0, /?~ = ~ ao d)~ a()~) sin )~(1 - sin Z2~/2 - cos )~2~/2) 

(3.3) 

where we have introduced a pseudo cross section a(Z), which reduces to 
o -(3) for d =  3. As is usually done (although this is not necessary), we nor- 
malize the conserved quantities (local mass and local energy) such that 
a0 = 1, a 1 = 0. The two first nontrivial Laguerre moments are a 2 and a3, 
which decrease like exp(- /~2r)  and exp(- /~3r) ,  while all other moments 
have an increasing number of time-dependent terms, which are recursively 
determined from (3.3). For  the existence of the solutions in L 2 spaces we 
introduce the norm 

U(z) = ~ aZ(z) F(n + d/2) 
F ( n +  1) 

Sufficient conditions/9'14) on N(0) such that N(~)< oo Vze [0, oo] were 
established. Different assumptions occur, depending on the model of the 
cross section a(Z). In Section 4, the integral recurrent relation (3.3) as well 
as the homogeneous time dependencer(t) will be used for the explicit 
numerical construction of particular inhomogeneous similarity solutions 
f(q  = c /T(O, 

3.3. Nonlinear Partial Differential Equations Equivalent to 
Models of the Homogeneous Boltzmann Equation 

We assume well-defined behavior for the cross section: o-(Z)-~ 
(sin Z) q- 1. Then the generating functional of the power moments, which is 
equivalent to a generalized Laplace transform of the distribution, satisfies a 
nonlinear partial differential equation, or more generally a nonlinear 
integrodifferential equation. In this subsection F(u, ~) is the homogeneous, 
energy (u)-dependent distribution, with Maxwellian e -~/(1 v)(1-  v) -d/2 (v 
being a constant). Local density and energy 

N / =  IF(d/2) ] -1 u d/2 - lui/2 F(u, ~) du i = O, 2 
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give for these conserved quantities 1 and (1 -v )d /2 ,  respectively. Let us 
define the transform 

l l(q r, 2, 0 '34' 

with cr()~)= (sin 2 Z) q-l, identical to a(d=3~(Z), while other d-dimensional 
cross-sections are deduced from (3.3). 

We start with q = 1 or an isotropic d =  3 cross section. Equation (3.4) 
leads to the most popular NL PDE associated with the B.E. It was first 
obtained by Krook and Wu (5~ for d =  3, by Tjon and Wu (6~ for d =  2, and 
generalized for any d value, (9~ 

( P ) H 2 (3.5) ( a~+l ) (ax+ l )g  x=log~T]- , r  = 

Some years ago this equation started the revival of interest in the 
Boltzmann equations. Krook and Wu got from it their BKW distribution. 
While from Grad's work the Laplace expansion was already understood in 
the 1960s, Eq. (3.5) made it possible to study the B.E. with the modern 
view of NL PDE. All the kinematic difficulties of the B.E. disappear in 
(3.5). Although (3.5) is not completely integrable, "solitons" and 
"bisoliton" solutions can be considered if we retain the mathematical 
generalization of rational fractions with one or two exponentials 
(exp(7,.x + pit). Unfortunately, all the solutions of (3.5) cannot be retained 
as physical distributions of the B.E. On the one hand, the transform 
H(p, ~) must be such that F satisfies positivity; on the other hand, local 
density and energy must be constants independent of time. A look at the 
transform (3.4) taking into account 1F,-~ 1 - 2 p u q / d  shows that 
H(p = O, ~)= No and -d/2 q•p[H/(1 -4-P)q]p=O = N2 must be independent 
of time. 

For other integer values of q r 1 (or other cross sections) there exists a 
class of NL PDE that generalize (3.5), 

(O,+l )q~ol ( l+qO+~m)H(x=logp~ ,r )=H 2 (3.6) 

and reduce to (3.5) for q =  1. The only known closed solutions (ls~ (not 
rejected by the physical constraints of the B.E.) are "solitons" and 
"bisolitons," 

1 - co2 - (q + 1 )~o, 
H(p, z )=  (1 +co,-lt- CO2) q+l (3.7) 
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with co2=v2p/(p+ 1), col=vlp(p+ l )e  ~ p =  -q/2(2q+ 1). Here vl and 
v2 are constants and v2 = 0 or co2 = 0 leads to the "solitons." 

The general transform (3.4) was proposed by Ernst and Hendriks. (1~ 
They deduced for H in the general q case an integrodifferential equation. 
The NL PDE (3.6) are particular equations of their integral equation when 
q becomes an integer. The Ernst-Hendriks integrodifferential equation is 
studied in Appendix B. We show that the "solitons" and "bisolitons" (3.7) 
still exist for q noninteger, the only difference being that the denominator 
does not have an integer power and we must still extend the usual 
definition of solitons and bisolitons. They lead to positive and physically 
relevant Boltzmann distributions, which again correspond to the BKW 
solutions. 

In order to come back to the Boltzmann distribution we must invert 
the transform (3.4). It is convenient at an intermediate stage to write F as a 
Laguerre series and H as a p"/(1 +p)~+q series (see Appendix B.3) and 
then sum up the Laguerre series. The "bisolitons" (3.7) give: 

F(u,r)=(l_z)d/2 l + - i - ~ _  z 1 Z z  2 ,z=vle~ P = -  
- q  

2(2q+ 1) 

(3.8) 

V l + V 2 < l ,  The positivity requires v ~ > 0, and either 
V 1 < (1 - -  V2)(l  + d/2) -~ or vl + v2 < 0. The Maxwellian equilibrium state is 
( e x p -  u/(1 -v2))(1 -Y2) -d/2 and v2 < 1. For  the conservation of mass and 
energy we note that No = 1, N 2 = d(1 - V 2 ) / 2  are constants independent of 
time. When v2=0,  (3.8) is associated with the "solitons" (3.7) and (3.8) 
becomes the standard BKW solution. When v2r  (3.8) is in fact still a 
BKW solution obtained in subsection (3.1) by the direct use of the 
Boltzmann equation. In fact the only change is in the normalization of the 
Maxwellian relaxation. 

It is unfortunate that up to now, if we except the BKW distributions 
no other exact solutions are known. It is usual to define the homogeneous 
similarity solutions as those for which the Laguerre moments factorize out 
only one time dependence. They have a group theoretical interpretation as 
was shown by Bobylev. (2) For  the q = 1 case (isotropic d =  3 a()~)) it was 
shown for the Laguerre series (14) (with normalization a0 = 1, al = 0 )  that 
outside this class the number of time dependences for the nth Laguerre 
moment increases with n with little hope of finding a closed solution. In 
terms of transform H(p, t) the similarity solutions correspond to solutions 
with only one variable pip + 1 multiplied by some time dependence. The 
"solitons" are of this kind but not the "bisolitons." The existence of 
bisolitons for q = 1 (isotropic d =  3 ~(i~)) does not contradict our previous 
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analysis/~4~ because the normalization of the Laguerre moments 
an ~ z"{1 - n [ ( z -  v2)/z] } are different, for instance al ~ v2 is different from 
zero for v2 r 0. 

However, in the literature for q =  1, another exact homogeneous 
similarity solution was proposed by Ernst(J6'7)--a Weierstrassian elliptic 
solution. Here we show analytically that this elliptic solution necessarily 
violates positivity and must be rejected. The study is done in Appendix B.4. 
The solution is an anharmonic Weierstrass elliptic function (17'16'14'7) 

H(p,z)=l-~o2~(y=~+c~,g2=O, g3),~o=e ~/6p/(p+l) (3.9) 

being an arbitrary constant. If g3 = 0, c~ = l, then the degenerate elliptic 
solution gives back the BKW soliton (3.7) with one pole in the y complex 
plane. For  g3 r 0, with an infinite number of poles for N, it is sufficient to 
study the doubly periodic function in a fundamental period parallelogram. 
For p > 0 (or ~o > 0) and g3 real, it is shown in Appendix B that H tends to 
negative infinite values an infinite number of times; while H violates 
positivity. A look at the transform (3.4) F ~ H  where the kernel 
~Fl(1, d/2,-pu) is positive (for p > 0 ,  d>~2) shows that necessarily H 
should be positive if F was positive. 

4. NUMERICAL CALCULATIONS, TJON EFFECT FOR THE 
ABSOLUTE MAXWELLIAN RELAXATION, 
OSCILATING MAXWELLIANS 

For the numerical constructions of the inhomogeneous similarity dis- 
tributions we must specify both the microscopic model of intermolecular 
forces, the initial conditions (at t = 0  or z = 0  both homogeneous and 
inhomogeneous distributions coincide) and the outside forces. 

We choose the true Maxwellian interaction (p = 5 for d =  3 in (2.1)). 
Then the cross section ~r(tc) is singular like ~c -5/2 near ~c = 0. The moments 
B .... (see Eq. (3.3)) of the cross section are not independent. We define as 
in Ref. 18 a set of moments ~bn of o(Z) and the Bmm a r e  expressed as linear 
combination of these ~b n. The first moment ~b I # 3.69 and the first ten ~b n 
were computed in Ref. 18. For  the singular cross section o(;(), the 6n are 
given by 

22"(F(n + 1 ) ) 2 ~ n  = F(2n + 2) Jo du(1 + u)u 3/'2 sinZn Z(u) 

Z ( u )  = ~r - (1  - u) 1/2 ~ dO(1 + u c o s  2 0) -1/2 
~0 

( 4 . 1 )  
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From the initial distribution we deduce the Laguerre moments a~(0) at 
= 0, construct numerically the a,(r, t) from the Laguerre integral system 

(3.3) and build up the distributions from the Laguerre expansion 
L~/Z-l(c2/2T(t)). We find a o = l ,  a l = 0 ,  az=a2(O) exp-~bl~(t)/3, 
a3 = a3 (0 )exp -  (b~(t)/2 and the higher moments are recursively deduced. 
We have numerically constructed the first twelve a~(r(t)). For the i.c. we 
choose simple families of distributions with known Laguerre 
expansions(14 18) 

I__Z1z2~ L(n~)(X) ~ zlm m'z2 
rn+m'=n 

( zl ) z2 
= ( z l - z 2 )  ' (l_zl)~+lz=~/~' (l_zj~+le~Z2/~:-i (4.2) 

q 

p=O 

= ( 1 - z ) - ( ' + ~ ) e x p  z_---Z] = ~ ~ (4.3) 

with ~ = d/2-  1. At z = 0, we can numerically check the truncation of the 
Laguerre series. For the absolute Maxwellian relaxation T(oo)= const, we 
choose the force xa e x p ( - a l  t) and the Bessel solution Jo (if a < 0) and Io 
(if a > 0 )  written down in (2.14). For the oscillating Maxwellians, we 
assume oscillating T and deduce the force a(t) ~1/2~2 T-1/2. In both cases 1 Ut2 
the homogeneous time satisfies r=#~toTa/2dt. All the numerical 
calculations have been done for the physical d = 3 case. 

4.1. Absolute  Maxwe l l i ans  and Tjon Effect  (~1) 

When this effect occurs, there exists an overpopulation of high- 
velocity particles at intermediate times. When t ~ o o ,  f ~ c o n s t x  
exp[-e2/2T(oo)] ,  let us define the reduced distribution 

f(v,  x, t) 
F R = 

f(v,  x, ~ )  

L,, = e x p 6 T ~  1 + ~  ~ J/2-1 =FR(lel, t) (4.4) 

with 6T+ 1 = T(t)/T(oo). Depending upon whether the effects exists or not, 
the relaxation toward 1 is from above, F ~  1+, or from below, F ~  1-. 
(However, the effect really exists if the F values are substantially larger 
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than 1 at intermediate time.) In the homogeneous formalism T is a 
constant, the first factor in (4.4) is 1, and F--* 1 § if the first term of the 
expansion in (4.4) [which asymptotically is the dominant one, 
l i m , ~  an(z)/ao(r)=3,0] is positive. This gives a2 (0 )>0  and constitutes 
the Hauge-Praestgaard criterion on the i.c. of the distribution. As a con- 
sequence, i.c. like (4.2) with only one bump and a2(0 ) < 0 cannot lead to 
the effect. (18) In the inhomogeneous formalism 3T e~ 0, both factors in (4.4) 
contribute. Let us look at the Gaussian term exp[6T(e2/2T)] = G in (4.4), 
G ~ 1 § (or 1 - ) depending upon whether T decreases (or increases) toward 
T(oo). From (2.13) we have ~tT -1/2= - ~  T-l/Za(t ') dt', whence 6 T > 0  if 
a < 0  ( 6 T < 0  if a > 0 ) .  In other words, the temperature T decreases 
(increases) if the external potential is attractive (repulsive). Consequently, 
different possibilities can occur in (4.4): 

1. Repulsive external forces (a > 0, G--* l ) and i.c. as in (4.2) with 
a2(O) = -zlz2 < 0. We predict no effect, and this is well verified in Fig. 1. 
Inhomogeneous similarity solutions depend in fact on two variables, which 
we choose to be [ct and t. Of course ]el = I v - < v ( x ,  t))] depend on v, x, t 
here, ( v )  = - x / 2  0, log T(t), with T given in (2.14). The i.c. for FR(tc], t) 
means Fn(Ic(t = 0)], 0), but in the study of the relaxation curves, we do not 
take into account the t dependence of ]c] because we consider t and lc] as 
independent variables. 

2. Attractive external forces ( a < 0 ,  G ~  1 +) and i.c. such that 
a2 (0 )>0  [examples of this type can be built up with (4.3)]. Then we 
predict the effect. 

3. Mixed situations where both factors in (4.4) are going in opposite 
limits 1 -+ are more appealing. New features which disagree with the 
homogeneous predictions could occur. Among the two possibilities, we 
choose the one where the Hauge-Praestgaard criterion predicts no effect 
a2(O) <0,  but is challenged by an attractive outside force (Jo solution for 
T-I~2). In Fig. 2 for the same i.c. (4.2) and the force xa e x p ( - a l  t) with the 
same a but different al values (or different decreases of the force) we 
observe contradictory results, with the effect in one case and no effect in the 
other. So, another feature appears in the prediction of the effect. We 
expand both factors in (4.4), keeping the dominant terms 

FR--1 ~-(~T) a~[- (d-1)+6--T+(e2"](1-6T(d+2)+ (4.5) 
a 2 \ 4T / \  a 2 / U  

and look at t ~ oo for e 2 fixed. We must compare the decrease of the tem- 
perature, which is like 6T~_exp(-alt), and the decrease of the second 
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Laguerre moment a2(t), which is like exp[ -~b l r ( t ) /3 ]  or 
- - - exp[ -  t((b~/3 lim r / t ) ] ,  where lim r/ t  represents the asymptotic dilatation 
(or contraction) of the homogeneous time with respect to the 
inhomogeneous one; here lim r/ t  = #T(oo)J/2. We define a criterion 

6a~ 1 /cr i t  G 1 --* F--+ 1 + 
c r i t -  ~bl lim(r/t) * [cri t  >> 1 - - * F ~  1 - 

In Fig. 2, q~1/3 ~ 1, lim r / t -  ~ 10, and crit_~ 0.16a 1. In Fig. 2a, al = 1, we 
observe the effect and in Fig. 2b, al -~ 10, we see the relaxation from below. 
We do not push too far the validity of this rough estimate and only retain 
small and large values compared to crit. In fact, many terms have been 
neglected in (4.4); note also that the ratios 6T/a 2 and (g)T)Z/az o c c u r .  On 

A FRilC'I,t) Zl=0.3 , Z2=0.5 
T(-)=1.020 

t=O 
x-=O 

[ / \ \ t:oos \ _  t:o~ t:oa~'-~ 
/ \ \T:O.5 \\r=3 r:8 

0s? / \ \ \ \  

0 2 t+ 6 8 

Fig. 1. Plot of the reduced FR(Lc], t) against ]c[ for the external force A - a e  " " x  and i.c. 
FR(]c], 0) = f ( l e l ,  0)~[(]c], oo ), with f ( ]c t ,  oo) - (2n) -3/2 exp[  --c2/2T(oo )], e - v + 
)(/2 ~, log T(t), 

--C2ZI 

7"(0)- 1, T(oo)= [lo(?a~/2)] 2 T(t)/r(oo)= [Io(2al/2e ~,/2)]-2,  r ( t ) = ~  ~; T 3/a dt'; a=0.01, 
Zl--0.3,  z2 =0.5,  T(oo) = 1.02, ,u= 10, a a = l .  
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I FRIICI,t) ZI=O] ' Zl-~O,5 
T(-i=o.g7 t=045 

' -A=O'O15e-tX T=l+6 
1.5 F cri I-:0.16k- / ' ~  ~ ~ ~ -~ 

/ / t=O 
t=O /~=o jfJ --_ 

L / / "  "~ 
. . / / ~  

I /I \ '\ \ I / /  k \,oo.o~ x .  ,:o.~ / I \ V:0.s "\,o29a 

V ~ a__~  \ J  L '1 
O 2 4, 6 8 

(a) 

i Pl~(IEl,tl ZI=O 3, Z2=0.5 

t T(-1=0.97 
1.5 A=-O 015eq~ 

criL=l.6 

i t=O i=u 

[ / / \ \ t=o os \ ~:o.3 t:o.s ---~ 
L , ' I  \ ' < ~  " , c '  ,:,~ - 

o s L \\\ \Xx 

0 2 J. 6 8 

(b) 

Fig. 2. As in Fig. l, but  for a=O.015 ,  T(oo)=[Jo(21aII"2)] ; = 0 . 9 7 ,  T(t)/T(oo)= 
[do(21all/2e-a'u2)]-2; (a) a~ = 1, crit =0 .16 ;  (b) a 1 = t0, c r i t =  1.6. 
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the other hand, we know that the third Laguerre moment a3(0), not 
present in (4.4), is important for the effect. 4 Intuitively, the result is due to 
two competing opposite effects. We choose an i.c. that favor the relaxation 
from below, and this remains true if the outside foce decreases too fast (as 
in Fig. 2b), while if the force decreases slowly, then the relaxation from 
above will be dominant. The important point is that we must take into 
account the microscopic model of the cross section (here ~b~ indicates the 
decreases of a2; notice that for the inhomogeneous similarity BKW exact 
solution, the same features were observed in Ref. 4). In conclusion, the 
effect depends not only on the i.c. (as in the homogeneous formalism), but 
also on the decrease of the external force, on the sign of the force (attrac- 
tive or repulsive), and finally on the microscopic model of the interaction. 
The existence or not of the effect is a signature of all the properties of the 
Boltzmann model at hand. 

4.2. Oscil lat ing Maxwe l l i ans  

We start with an oscillating temperature T =  ~1 + r(sin t +  ,~ sin qt)] 2 
and choose q integer, with 2 an arbitrary parameter and with an outside 
force that is also oscillating. The oscillating relaxations have been 
thoroughly studied in Ref. 4 for the exact BKW inhomogeneous similarity 
solutions. Here we want only to show that the results are more general. If 
we choose q = 2 ,  then for 12] <0.5, when the distributions are in the 
asymptotic regime, they oscillate between two Maxwellians and four for 
L2I >0.5. In Figs. 3a and 3b for 2--=0 and 2 =  1, with i.c. provided by (4.3), 
we observe these two modes of relaxation. Starting from t = 0, we observe 
two successive regimes: first a preasymptotic regime and second the 
asymptotic one where the distribution oscillates between different 
Maxwellians. 

5, LINEAR V E L O C I T Y - D E P E N D E N T  FORCES A N D  
U N I F O R M  SOURCES 

Our aim is to extend all results of the previous sections to another 
type of external force: linear velocity-deoendent forces plus source terms. 
We still assume intermolecular forces with inverse power law, but the exter- 
nal forces are uniform in space. We start with the inhomogeneous dis- 
tribution 5ff(v, x, t) =/~ Col f :  

5 f = ~ ? t + v . ~ x + a l ( t ) O , . v + a 2 ( t ) + A ( t ) . O  v, c 2 = ~ - a l d - a 2  (5.1) 

4 In this Ref. 18 the first ten numerical ~b n values as well as the fist 12 differental equations for 
the Laguerre moments a~(t) ar quotd, 
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1 ~_(l~l,t =f'~) 
a) ),=0 

O.S 02 

Z~=0.5, Z2=0.3 
T-1/21f=l+O.2(sin t �9 k sin 2t) 

I fllEl,t=t'~) 

0 1 2 3 0 1 2 3 4 

Fig. 3. Plot  o f f ( [ c l ,  t)  aga ins t  fc I for T - 1 ' 2 =  1 + r (s in  t + 2 sin 2/)  a n d  i.c. 

.f( Pcl, 0) = { e x p [  - c2/2 T ( 0 ) ]  }{1 - --1) - 3"2[exp( - c ~  )]  

• [t + ),,L~,'2(~o 2) +:2)'~L~12(co2)] 

y = z l ( !  - z~ ) .z r = c212T(0)(  1 --  z~ )]  -J,  T(0)  = 1, t = t %  r = r '~,  r = I~ ~'o T 3/2 dr'; :~ = 0.5, 

z2 = 0 . 3 ,  # =  10, r = 0 . 2 ;  (a)  2 = 0 ,  (b)  2 =  1. 

and define the differential part of • :  

= c~, + v .  G + [ a l ( t ) v  + A(t)3 c~, 

with Col f still defined by (2.1'). 
We will associate an homogeneous formalism with the source term. As 

we shall see, two cases occur, depending upon whether al d + a2 = 0 or not. 
In the first case the formalism is almost identical with the spatially depen- 
dent force, the main difference being the relation between the temperature 
T and the force a~(t) .  
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5.1. Nikolski i  T r a n s f o r m  

We define the inhomogeneous similarity solution f(q(v,  x, t), z(t)) 
identical to an homogeneous distribution F(q, ~), the only difference with 
Section 2 being that the homogeneous formalism contains a source term, 

[O~ + a(r)]  F(~I, r) = Col F(q, ~) (5.2) 

We still assume II = 7 ( v -  Vo), 7 and Vo being unknown, and introduce 
homogeneous and inhomogeneous macroscopic quantities No, N2, <q)  
and p, T, <v>. The main difference is that the Ni are not constants if 
a(r) r 0. Let us define b(z)= e x p -  ~; a ( { ) & ' ,  and assume N2(0 ) = dNo(0); 
then Ni=N~(O)b(r),  { i l )= (11 (0 ) ) ,  but we still choose { q ) = 0 ,  
N2(O)/No(O) = d [Note that FLu =b(r)(2r~) J/2 exp(_q2/2).]  All relations 
(2.6)-(2.7) are valid except pT-a/Z=No(O)b('c), which explains the sup- 
plementary term in FLM- Finally, we still have 7=  T 1/2 vo = (v) ,  and 
112 =e2T 1. Performing the change of variable v ~ q in C o l f  and factoring 
out the temperature (or ?)-dependent term, it follows, as in Section 2, that 
the inhomogeneous B.E. reduces to the homogeneous one (5.2), provided a 
supplementary relation (&/dt) a(r )= a l d + a2 is satisfied. We have 

d'~ ~ = # T l + U a  1)/2](p 3)/(p 1), =~(~j)~'~0 

f0 (a 1 + da2) dt' = a(r ') &'  

(5.3) 

As for the spatial external force, the condition 2 ( ~ j ) = 0  [•(I12) = 0  if 
F = F ( q  2, ~)] represents the condition on the outside force which alone 
determines the temperature T. The possibility of connecting homogeneous 
and inhomogeneous formalism is still independent of the intermolcular 
forces (for instance, we can as well have hard spheres). Of course, the 
homogeneous time ~ in (5.3) depends on the inverse power law p, but, for 
instance, if T--* const, then in all cases r ~ oo. 

5.2. c~{ qj) = 0 

We remark that the source term a2(t) disappears in 5~, so that only 
conditions on the external forces remain. We have 
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As for the spatial forces, the coefficients of v~vj, re, vj, const are zero. We 
find 

7~, = (v)j,~, = O,(a~7 + 7~) = O, (v)j ,~ = al + 0, log 7 

and 

7 ( v ) = ~ ( O ) +  A(t ' )y( t ' )d t '+VoX,  a 1 = ( V o - - T t ) 7  -1 

7 =  exp--  a~ dt' l + v o exp a~ dt' = 

(5.5) 

Vo being a constant. If we except the relation between temperature and 
force, all other relations are similar to the spatial force ones. We can still 
have oscillating T or T ~  const. For  instance, with the constant positive 
force a 1 = al(O) 

Y0 7 = T_~/2_ Vo ( 1 - e - a ' ( ~  ,1(o),~ (5.6) 
al(0) al(0) 

Of course other forces lead to T(oo)=cons t ;  for instance, let us choose 
arbitrary e( t )~O,  ~,---,0, and 7 = 7 ( o o ) + e ( t ) .  We deduce the force 
al = (Vo - e,)/[7(oo ) + e(t)] ~ Vo/7(oo ). However, as we shall see, this is not 
sufficient to obtain absolute Maxwellians. The weaker condition 2 ( r l  2) = 0 
is studied in Appendix A (see Ref. 4. We can have mean velocity ( v )  of 
type (5.5), but with a supplementary antisymmetric tensor part ~2jcooxj 
(however, not for the physical d =  3 case). 

5.3. Local Maxwe l l i an  and ~ ( q 2 ) = O  

The study of 2 ( q  2) = 0 alone as well as the connections between the con- 
ditions •(v(x, t ) e x p ( - q 2 / 2 ) )  = 0  with either 2 ( ~ / j ) = 0  Vj or ~?(q2) = 0 is 
done in Appendix A. If we compare with the spatial force, a new pure time 
factor appears, 

1 fo 2TC2 fLM = ~ exp - (ald+a2) dt 'ex p (5.7) 

with T provided by the force as in (5.5). 
If a id+ a2 =0,  only the usual Gaussian term remains and we can, for 

instance, have absolute Maxwellians T---,T(oo) and f L M ~ c o n s t x  
e x p [ - e 2 / 2 T ( o o ) ]  as in the spatial case. If 2'fLM = 0, al d +  a2 = 0, v = v(t), 
it is shown in Appendix A2.1 that necessarily v = const and ~ ( q 2 ) = 0 .  If 

822/45/3-4-18 
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a~d+a2r then, as was shown in Ref. 4, both Gaussian and pure time 
factor terms lead to incompatible asymptotic behaviors (with the meaning 
that for [el fixed, t ~ 0% the product of the two terms is singular, going 
either to zero or to infinity). However, if the force is such that T-~ 0, then 
a meaning can be given to the asymptotic behaviors. For  instance, for the 
pure attractice force a~(t)= -al(O), 

T--* [ e x p -  2al(O)t] l + v o  exp-a~(O)t' dt' -*0 

and 

fLM ~ const x 6(v -- (v( t  = ~ ) ) )  

5.4. M a x w e l l  Particles and ald+a2=O 

For this particular mixing, the external force and source term can be 
rewritten [a(t)v+A(t)] 'Ov.  In this subsection we restrict our study to 
intermolecular forces p - 1 = 2 ( d -  1) and energy-dependent homogeneous 
solutions F = F ( q 2 ,  r). As in Section2, the homogeneous time is 

= ~ ~'o Td/2 dt', the only change being that T is given by (5.5). In (5.2) we 
have a(r) = 0 and the homogeneous solution is the one studied in Section 3. 
All the results of Sections 3 and 4 apply here. 

For  both spatial force and velocity force plus source al d +  a 2 = 0 let us 
choose the same T and the same i.c. for f (q2,  0). Both inhomogeneous dis- 
tributions are identical for any t value. All the solutions of Section 4 
(spatial forces) can be reinterpreted here. We only have to deduce the force 
al(t)=voT1/Z+l~?tlogT. Note also that if T(oo)=cons t ,  then a l (o o )=  
v0 T(oo)l/2> 0 (assuming ~?t T--* 0) and a 2 < 0. This means that the absolute 
Maxwellians are obtained with an asymptotic source term (not a sink). 
Consequently, the reduced distributions of Figs. 1 and 2 and the 
asymptotic ocillting Maxwellians of Fig. 3 are numerical examples of dis- 
tributions corresponding to dal + 0 2 = O. 

5.5. Local Entropy 

We come back to the general intermolecular forces and assume 
both external velocity force and source term as in (5.1). We define the 
same local density and current entropy as in Section 2.5 and 
find J o , + 0 x ' J + a 2 J o > ~ 0 ,  where the nonnegative rhs is still 
- ~  dv log f C o l f .  Now we assume even inhomogeneous similarity dis- 
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tributions and again obtain ~0 = ~(t) ,  J = (v )  ~(t) .  From Section 5.2 we 
have ~?x" ( v ) =  dal- �89 log T, whence 

c?t lJoT-d/2 exp f: (atd + a2) dt'] >~ O 

and for the particular mixing da 1 + a2 = 0, as in Section 2 for the spatial 
force, we find that JoT -d/2 is a nondecreasing function of the time. 

6. CONCLUSION 

The aim of the paper was to show that the previously found (4) BKW 
inhomogeneous similarity distribution of the B.E. with well-defined external 
forces is not the only one leading toward absolute Maxwellian equilibrium 
states. Here, from the homogeneous distributions associated with the 
inhomogeneous similarity ones, we have explicitly constructed a whole 
class of such distributions. The external forces determine entirely the time 
dependence of both the temperature and the density of the inhomogeneous 
distribution as well as the time of the associated homogeneous one. The 
absolute Maxwellian relaxation is obtained from the asymptotic behavior 
of the temperature. It follows that this property is independent of both the 
intermolecular forces and of the nature of the homogeneous distribution. 
However, at present, only for a Maxwellian interaction and spatially 
homogeneous distributions with even velocity dependence do we com- 
pletely know the methods for the explicit construction of distributions. 
Consequently, we have restricted our study to these cases, although, for 
instance, 5 the formalism could be extended to velocity-dependent spatially 
homogeneous distributions. The Laguerre moments of the Laguerre series 
which build up the distributions are deduced both from the time depen- 
dence of the outside force and the i.c. 

For the inhomogeneous similarity distributions without external for- 
ces, the Nikolskii result holds. (I) The distribution corresponds to a gas in 
expansion: the temperature, the density, and the distribution go to zero 
when the time goes to infinity. One might think that this is due to the con- 
struction of very peculiar classes of inhomogeneous distributions. However, 
in the infinite medium considered here, with neither boundary conditions 
nor external forces, it may be that the expansion of the gas holds for a 

5 We note the existence of different homogeneous  formalisms which do not share even velocity 
distributions and for which the present framework could be appliedJ 19) 
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larger class of solutions. Physically it seems difficult for the gas to be con- 
fined (equivalently, a Maxwellian relaxation) if nothing prevents its expan- 
sion in space. 

In Appendix A we recall that for time- and space-dependent solutions 
of the B.E. without collision term or external forces, (13) T, p, f vanish at 
infinity. Let us assume a weaker condition: for t larger than some fixed t o 
(arbitrarily large, but finite), the collision term is negligible. Then the 
asymptotic behavior for t larger than to is provided by the linear B.E. part 
and the previous expansion result holds. Also note that in the one-dimen- 
sional Kac model, for the explicit inhomogeneous distribution relaxing 
toward a Maxwellian, (13) in order to maintain positivity in the whole space, 
it is necessary to introduce elstic walls, sources, and sinks. 

For the class of linear velocity-dependent force plus source term, 
a l d + a 2 = O ,  it is clear that both contribute to the existence of absolute 
Maxwellians because this happens for a particular mixing. Do these forces 
and source term have a physical meaning? Linear velocity forces seem 
similar to viscosity. On the one hand, they restrain the motion of the par- 
ticules. On the other hand, in the B.E. they modify the macroscopic conser- 
vation laws (mass,...). Then, the particular mixing with the source term is 
such that they disappear in the mass conservation law, (~  + c~ x �9 ( v ) ) p  = 
- ( a l d +  a2) p = 0. There is some kind of dissipation, which is balanced by 
the source term. A similar cancellation occurs in the inequality for the 
derivative of the local entropy (see Section 5.5). For the spatially dependent 
forces, the resulting potential is the time-dependent harmonic potential. 

Recall that in another context (distributions for vanishing collision 
term), Boltzmann (12) introduced these potentials. Although in the literature 
they are considered with some disdain, the fact that they reappear here 
naturally in the search for Maxwellian states suggests that they are impor- 
tant in the theory of the B.E. Further, here their time dependence is' such that 
they vanish when t ~  oo; nevertheless, the distribution remains confined 
within an absolute Maxwellian. They play a role similar to a cutoff or a 
screen, necessary to avord the trivial expansion result. 

As a by-product of these inhomogeneous similarity solutions with 
Maxwellian equilibrium states, we note that the Tjon (8) overshoot effect 
appears in a more complicated way than in the homogeneous energy 
dependent formalism. Not only is the i.c. important, but so are the 
microscopic cross section as well as the sign and the decrease of the outside 
potential. Some of these new features were already present (2~ in the one- 
dimensional Kac model. 



Boltzmann Equation 637 

APPENDIX  A. ~f'fLM = 0 ,  c~('rl2=0 

A1. Spatial Forces A(x, t) (see also Refs. 4 and 13) 

Let us write fLM = V(X, t)exp(--q2/2), q = 7(v -- (v) ) ,  v = p(2~zT)-d/2; 
we assume ~fLM = 0  and study the constraints on T =  7 -2, v, (v ) ,  A. We 
have 

(0,+V'C3x)logv=SaTI2/2, & a = a , + V ' 0 x 0 x + A ( x ,  t ) -0v (A1) 

[-note that (A1) becomes ~-Q-~'112=0 if v=cons t ] .  The lhs is a first-order 
polynomial in the components vi (of v), while the rhs is of third order: v2ve 
leads to axY = 0 or T =  T(t)  and v 2, v~vj give 

(v >, = ~,(t) - 1/2( T i T ) x ,  + ~ a~o(t)x j, 
J 

O)ijOV(J)ji=O, (Oii=O (A2) 

Equating the coefficients of the remaining v~ and constant terms in (AI), 

V 1 0~, log v = ~3,(y ( v ) i )  + ~ V ( v ) / c o s / -  A,y 
J 

OtA = - 2 ( v ) - A / T ,  A = l o g v  2 -  (v)Z/T 

(A3) 

(A4) 

where (v)~ and Ai are the components of ( v )  and A. [Notice that 
(A3)-(A4) lead to (cO, + ( v ) -  C~x) log v = 0]. We substitute (A2) into (A3), 

_ y  -1 c~xi log v + Ai7 

(A3') 

and remark that the rhs is of first order in the spatial xi components. 
Applying Oxj and i +-+ j, we find 

Ai,~, - Aj,x~ = 2Tc~ t T- l (oo,  2c32~A = (A~,~, + Aj,~,) T -~ (A3") 

From (A3") we see that the force A(x, t) is conservative if T-leo~/=const 
and nonconservative otherwise. Finally, we rewrite (A3) with A defined in 
(A4): 

c~xA + 2c3,(v)/T= 2 A / T  (A3bis) 
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A1.1 .  From ~PfLa  = 0 and A = 0 It Fo l lows  T h a t  fLM -+ 0 and 
T--+0. From (A3") we find both T-l(0~=const  and A of the type 
Zo(t) + 5Z 21,i(t)xi + 22,i(t)x 2. Applying (A3bis) or 

O~A = 8.~A + ~,2 T -1 (v)~ = 0 

to A and (v)~, we find 2 1 3 T i 8,2T o~i=0,3 = 0  

and for the general solution 

T -1 = C 0 + C 1 t + C212 

T - '  (v  ) , =  agt + ~i + (C1/2 + C2 t)x~ + ~ cbuxj (A5) 

log v 2 = T -1 (v)2  + ~o - 2 ~, 8 i xi + C2x z 

where Co, C1, C2, 0~, ~g, oh,:/, and ~o are constants and T - ~ i  = ~g + ~,t. The 
important point is that T abd fLM --+ 0 when t --+ oo. We can choose either 
cb(~=0 or oboe0. 

A1.2.  A = 0  and v = c o n s t  or Equ iva len t ly  s  w i t h o u t  
Force: 

(i) c%.=0. From (A2') we find ~, ,=0, d# /=~ i=cons t ,  

T 1 / 2 = ~ = C o + C l t ,  , / ( v ) = a + C l x  (A6) 

where Co and C1 are constants and still T, fLM --+ 0 when t --+ oo. 

(ii) co0r On the one hand, each of the three braces of (A3') is 
zero. On the other hand, T and ( v )  are given by the first two relations 
(A5), with Ci, ~i, ~i, (5o constrained by (A4) (A5). From (A3') we get 

E (-O il(0 lj = O, 
l 

The first relation gives constraints 

i C j  

(02(0), i independent 

(A7) 

on the antisymmetric coij that are trivial 
for d = 2 ,  impossible for d = 3 ,  and satisfied for d = 4  if we choose 
C024 = --(/)(013, 0")23 = q)(014, (034=(~0(012, and q ) 2 -  1. Equations (A4) (A5) 
can be expressed by 8 , T - l ( v )  2= 0: 

CoG-�88 Z =o 

Z(Coa - (AS) 
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The first relation defines co(0). For the others we can choose :~= ~ =  0, 
otherwise, for instance, the last two relations give for d =  2 

C l D  = 2(~2~2 H- ~1~1) , C2D=(~2H-~ 2 

CoD = ~2 + ~2 2, D = ((~2~1 - -  ~1 ~2)  O)121 
(A9) 

while all other relations are identities. In conclusion, we still have 
T, fLM --+ 0 when t --+ oo. 

1.3. The Assumption v=v( t )  Leads Necessarily to L-~ 
and  v = c o n s t .  In (A3) both the lhs and the rhs are zero. We sum 

(v)i(7-17,(v) , - -A~) and find - ~  (v)i(v>jco~/ from the rhs of (A3). 
Due to the antisymmetry of co,)., this result is zero, and substituting in (A4), 
we find v=cons t  and necessarily ~112=0. Returning to the explicit 
expression (A3~), the rhs defines the different parts of the i-th component 
force, its &-dependent and -independent parts, and its xj ( j  #/)-dependent 
part. Let us call a(t)x the part of Astrictly proportional to A; then 

(T 1/2),, = a(t) T -~/2 (AIO) 

with a(t) arbitrary. If a(t)t2~O when t--roQ, there exist solutions 
T--* const and fLM ---+ fAbs Maxw = exp( - const x e2/2). 

A2. Linear Veloci ty Force Plus Source Term al(t) C~v'V+a2(t) 

We start with 

5 ~ = t ? , + v .  0 x + a l ( t  ) 0v'V + a2(t) + A(t). ~?v 

Define 2 = 5 0 - d a  1 + a2, the differential part of 50, and seek the con- 
straints on 7", v, (v>, A, al ,  a2 due to YfL~A=S(vexp(--q2/2)=O, 
! l = 7 ( u  (V>) ,  ~)2= T 1: 

ald+ a2 + (c~t + v- ~x) log v = 54'q2/2 

2 = ? , , + V ' 0 x +  [ a ~ v + A ( t ) ] - 0  v 
(AI') 

The lhs is still third order in v~ and the rhs first order; (A2) becomes 

(v) i - - -e ,+  [ a l ( t ) -  1/2T, T-~]xi+~co~jxj, c o 0 + o j i = 0  (A2') 

It turns out that (A3) is the same, while (A4) changes: 

2(aid+a2)+~3,A=-2T l ( v ) ' A  (A4') 
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with the same A as in (A4). Equation (A3') is slightly modified; we add 
x~ , (a~7)  and the last brace on the rhs has a supplementary term: 

A2. If we Assume a~d+a2=O, v = v ( t ) ,  Then Necessarily 
v=const  and ~ q 2 = 0 .  Equation (AI') gives g~logv=2q2/2. From 
(A4'), which becomes identical to (A4), we have c3,1ogv= 
y~, (v>i(63t~/(V>i-AiT),  and is equal to -5~  (v>~(v ) j c%= 0. 

A22. Assuming C~q2=0 o r  c~(q/)=0, We Find v=v( t ) .  From 
(AI') we have a i d +  a 2 + (0 t + V" ~3x) log v = 0; since v is v independent, it 
follows that 

v(t) = v(0) exp - (a I d + a2) dt' (A11) 

A2.3. Study of  C ~ r l 2 = 0 .  The lhs of (AI')  is zero and either 
a l d + a 2 = O  and v=cons t ,  or a l d + a 2 - r  and v is given in (All) .  For  the 
study of ~ q 2 = 0 ,  the term a l d + a  disappears in (A3), (A4'), (A3a'). We 
first show that (A4') is a consequence of (A3) or (A3a'). It is sufficient to 
note that 

<v) , (8 ,? (v  > , -  Ai?) = - ~ ( v ) , ( v ) j ~ %  = 0 

Consequently, we reduce our study to (A2')-(A3) or equivalently (A3a'). 
In (A3a') the lhs depends only on t, while the rhs has xi and xj terms; it 
follows that 

A,y  = 8,(~i? ) + ~ ej?m~, 

independent o f /  

J 

(A12) 

~?, log 72co0 + a I = O, ~" c-Oil~lj = 0, 

(i) ~%=0. We find ( v > = a + v o T l / 2 x  with 
(Vo = const.) leading to 

i # j  

al = ( V o -  7,)? 1, 

)]( ) 7 "~ T-U2 = exp -- a I dt' 1 + v o exp a I dt" dr' 
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For instance, if al = const > 0, then 

7 = y(oe) + e - " ' [ 1  - 7(oo)] ~ 7(oe) = voal 1 (A13) 

Even if T + c o n s t ,  fLM---~fAbsMax only if ald+a2=O, which means 
a2 = const < 0 in the previous example (or the presence of a source term 

a2). 
(ii) 0)~j-r In (A12), the second and the fourth relations cannot be 

satisfied for d =  3. There is no problem for d =  2, while for d =  4 we can 
choose (.024 = -q)(ol3 , 0)23 = @6014 , 0)34=:'-~q?o12, and (p2= 1. For  the first 
relation of (A12) we can either choose cq= A ,=  0 or consider that they are 
arbitrary functions linked by this relation. The second and third relations 
give 

720)o= [exp (-  fo al dti) ] 0)#(O ) 

O,(?al) + o/ , , -?  3Iexp(-2f~a, dt')0)2(O)=O (A14) 

= F ,  
J 

leading to a nonlinear differential equation for T (or 7), once al is given. 

A P P E N D I X  B 

BI .  Sol i tons and Bisolitons of the Ernst-Hendr iks 
Integrodi f ferent ia l  Nonl inear  Equation 

We have, with q not necessarily an integer, 

( . ( 3 e _ . &  +. JJ 

(~-~)qF(2q)cP/(P+l'drfr(,(F(q)) 2 Oo 

We easily find 

S = I + O ,  

r(p+p 1) ) lq -1  

p ) "  F(2q) F(q+n) 
Y(r")= ~ F(q) F(2q+n) 

BI.1 .  " S o l i t o n s . "  We start with an ansatz 
~F0(a; 

(m) 

H = (! + 2z) 
;z), where z=veP~p/(p+ 1) and p, 2, v, and a are unknown con- 
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stants. We recall that 1Fo((a; ;z)) 2= ~F0(2a; ;z) and substitute the 
ansatz into (B1): 

T~)) F(a+n--  1 ~q~(H) = ~ n! ) z ~ ( n p + l ) [ a - l + n ( 2 + l ) ]  

S ( H 2  ) = V(2q) ~ r(2a - 2 + n) F(n + q) z,P22(n, a) (B2) 
F(2a) F(q) n! F(n + 2q) 

P22(n, a ) =  I-n(1 + 2 ) ] 2 + n [ 4 a - 3  + 4 2 ( a -  1 ) - 2  2 ] + ( 2 a -  1 ) (2a -2 )  

In 5~(H) and JV(H2), from the asymptotic n dependence of the coefficients 
of z n, we find a = q + 1 ; it follows that 

2(2q+ 1)(np + 1)In(1 + 2 ) + q ]  = P22(n, q +  1) 

From the equality of the coefficients of n 2, n, const we find 2(2q + 1)p = 
1 + 2 = - q  and finally, with v an arbitrary constant, 

H = [ 1 - ( q + i ) p - - - ~ v e P ~ l l F o ( q + l ;  ;pV~P+l eP~ ) (B3) 

B12. " B i s o l i t o n s . "  We start with an ansatz H = ( l + 2 z + # y )  
iFo(a; ;z), where 

P P (1 + veP~), y = ~o ~ ve p~ z = (p -ff--~ 

and a, 2,/~, v, ~0, and p are unknown constants. We substitute the ansatz 
into (B1) and find 

5Q(H) = [/'(a) "~ n! \ p +  l J  
(B4a) 

Qz(n, a, e '~)= (veP~+ 1 ) [ a -  1 +n(1 + 2 + # ) ] [ l + v e p ~ ( n p +  1)] 

- # n { 1  + v e p ~ [ 1  +p(n- 1 ) 3 }  

jV(H2) T(2q) ~ T(2a -- 2 + n) F(n + q) P2(n ' a, e p~) 
T(2a) T(q) n! T(n + 2q) 

( q~P ~ (1 + veP~) "-2 (B4b) 
•  

P2 -- (1 + ve;~) 2 P22(n, a) + n(n -- 1) veP~[p2ve p~ + 22#(1 + ve;~) ] 

+ 2ttn(2a + n - 2) ve;~(1 + ve p~) 
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P22 was defined in (B2). From the asymptotic n dependence we still find 
a = q + 1 and consequently 

2(2q + 1 ) Qz(n, q + 1, e p~) = P2(n, q + 1, e p,) 

Q2 and P2 can be written Q2=v2e2p~Q22+vep~Qal + Q2o and 
P2 = v2e2p~P22 + veP~P21 + P2o. Relation (5) holds for each of the couples 
(Q22, P22) (Q21,/521), (Q20,/520). Each couple leads to a second-order 
polynomial in n and so to three relations. From the first couple we find 
2p(2q+ 1)= 1 + 2 + # =  -q ,  from the second, 2 =  -1  or # =  -q ,  and iden- 
tities from the third. Finally, v and (p are arbitrary constants; the solutions 
depend on two variables: gop/(p+l), where we define v2=go, and 
q)veP~p/(p + 1), where we define v~ = rpv: 

H=[1 v2P ( q + l ) v l p e P ~ ] (  v2p v~pe p~ 
p + l  p + l  J ~F~ q + l ;  ; - - 4 - ~ ) , p + l  

- q  

P - 2 ( 2 q +  1) 

which gives back the "solitons" (B4) if v 2 = 0. 

(B6) 

B1.3. Bol tzmann Distr ibut ions Associated w i th  the 
Sol i tons and Bisolitons. F(u, ~) is defined by 

H(P,r)=(l+P)q[F(d/2)]-~  fo ~duu~/2-~ 1 F l ( q , d , - p u )  F(u,r) (B7) 

and we must invert (B7). As an intermdiate step, we find the solution as a 
Laguerre series. Using 

,F0(a; ; x ) = [ F ( a ) ]  - X ~ F ( a + n ) x ~ / n !  

and 

p" F(n + q) F(d/2) 
( p +  1) ~+q n! l(q) 

= e uMd/2 l lFl(q,d/2, -pu) L~/2-1(u)du 

we find for the bisolitons (B6): 

(Bs) 

F(u,r)=e "~zn[1-n(1 -v2 / z ) ]La /~- l (u ) ,  z=v2+v le  p~ (B9) 
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Note that v2 is the coefficient of e-"U[/2 ~(u). In the soliton case v2 = 0, 
this coefficient vanishes, whereas in the bisoliton case, it is independent of 
time. In order to sum up the series, we use 

~,, Ld/2 - I(U ) 2n(1 __ z)d/2 = e~Z/(~- 1~ 

z a~ ~ L~ el2- 1)(u)z" = (1 - -z )  -(a/2+ 1)ze u~/(~- 'IL~/2 it-u/(1 - z ) ]  
(mo) 

with L~)(u) = c~ + 1 - u, and finally find 

' Z - - V 2  1 - z  F(u, ~')= (1 -z)Cl/2e -u/(1-z) 1 + - ( ~ z  (B l l )  

z and p are defined in (B6)-(B9). For  the "solitons," v2 = 0, and in (B9) the 
Laguerre moments  z n ( 1 -  n) vanish for n = 1. 

B2. T j o n - W u  NL PDE: Fundamental  Solut ions and 
Weierstrassian Solut ion 

We restrict attention to q =  1 in (B1) or 

(1 + 0~)(1 + Ox) H(x  = log[p / (p  + 1)], ~) = H 2 

(i) The fundamental solutions are of the type H - ~ l + w P ( w )  p+I, 
w = exp[N(x  + p~)], N integer > 1, and satisfy the equation 

( N +  1)(/~P W + c~WPww) = p2 

1 - N  
P = N ( N + I ) '  /~--- - 2 N 2  + 3 N +  1, c~ = N ( N +  1) 

No known closed solution not violating physical constraints was obtained, 
while numerical calculations suggest that they could violate positivity. 

(ii) The equianharmonic Weierstrass solution is a mixing of the 
two above solutions for N = 2 , 3 .  Let us define H = l - w Z P ( w ) ,  
w -= exp(x + p~); then 

(6p + 1 )(P + Pw) + w2pPww + w2p2 = 0 

Choosing p = -1 /6 ,  we find 

P e -~/6 (B12) Pww = 6P2, H = 1 -- wZ~(w + c~, g2 = 0, g3), w = P + 1 
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and g3 are arbitrary constants. We follow the notations of Southard (~7~ 
and prove that that the associated F(u, ~) Boltzmann distribution violates 
positivity. We know that 

~ = y - 2 ( l + ~ e n y 6 " ) ,  y=w+~,  ei=g3/8 

en(n-1)(6n+l)=~emem,,  m + m ' = n  

In the degenerate case, g 3 = 0 ,  H=I- -w2/ ( I+w)  2 for 7 = 1 ,  which is 
nothing but the BKW soliton (B3) for q =  1. Then g 3 ~ 0  corresponds to 
an extension of the BKW solution. 

First we show that for w > 0  finite, H(w,~) necessarily violates 
positivity. N, an even y function, is a doubly periodic function with an 
infinite number of poles, with half-periods w 2 and w;: 

f/~ f 12 
W 2 : dv S(1))-1/2 wf2 = i dv [S(v)I i/2 

2 co 

l 2 = sign g3 Ig/4] I/3, S = 4v 3 - g3 

It is sufficient to study a fundamental period parallelogram (FPP).  For 
g3>0 ,  w+e~[2Mw2, 2 ( M + l ) w 2 ] ,  ~ > 0  has values symmetric with 
respect to ( 2 M +  1)w2, M integer; N goes to infinity at the edges of the 
interval and is positive at the minimum ~ ( ( 2 M +  1)w2)= [2 >0.  It follows 
that H and - wZN go to minus infinity an infinite number of times when w 
is along the real axis. For  g3 < 0, we use the relation ~ ( y ,  g2 = 0, g3)=  
-N(iy, g2=0 ,  -g3) ,  - g 3 > 0 .  In the FFP  we look for g 3 > 0  at the 
diagonals parallel to the imaginary axis. Then N(iy, g2 = 0, - - g 3 )  along the 
interval [2Mw'2, ( 2 M + 2 ) w ; ]  is real, symmetric with respect to 
( 2 M +  1)w;, goes to minus infinity at 2Mw'2, ( 2 M + 2 ) w ;  has two well- 
defined zeros, becomes positive between these two zeros and is maximum 
at w;, where ~ has the value 12 > 0. It follows that H = 1 + O2@(iy, g2 = 0, 

--g3 > 0 )  has an infinite number of negative subintervals. These is no con- 
tinuity between the BKW g3 = 0 case and the Weierstrass solution, because 
in the complex y plane we have one pole in the first case and an infinite 
number in the other. 

Second, we prove that necessarily F(u, ~) violates positivity if H does. 
This is trivial for d = 2, because the transform F - *  H becomes the Laplace 
transform 

;5 H(p ,~)=( l+p)  F(u,r) e-PUdu 
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and F > 0  leads to H > 0 .  In fact, for q > 0  and d > 2 ,  the kernel 
~Fl(q, d/2,-pu) of the transform (B7) has no negative~21)-pu zeros; 
whence F > 0  still requires H > 0 .  Here, q =  1 is a particular case of this 
general result. 
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